Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mustafa Odabașoğlu, ${ }^{\text {a }}{ }^{\text {* }}$
 Özgür Özdamar ${ }^{\text {a }}$ and
 Orhan Büyükgüngör ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.083$
Data-to-parameter ratio $=11.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl 4-chloro-2-[(4-nitrophenyl)hydrazono]-3-oxobutyrate

The title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{5}$, adopts a keto-hydrazo tautomeric form stabilized by an intramolecular hydrogen bond. The aromatic ring and aliphatic chain, which adopt a trans configuration about the $\mathrm{N}-\mathrm{N}$ bond, are nearly coplanar, with a dihedral angle of 18.30 (6) ${ }^{\circ}$ between them. The molecules pack via weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds which, together with an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bond, form an $S(6) C(13)$ motif. The structure is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions.

Comment

The chemical background of the title compound, (I), was described in the previous paper (Odabaşoğlu et al., 2005). The molecular structure and the atom-labelling scheme are shown in Fig. 1. Selected bond lengths and angles are listed in Table 1.

(I)

The molecule adopts a (Z) configuration with respect to the $\mathrm{N} 1-\mathrm{N} 2$ bond, and the dihedral angle between the aromatic

Figure 1
The structure of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. The intramolecular hydrogen bond is drawn as a dashed line.

Received 26 May 2005
Accepted 3 June 2005
Online 10 June 2005
\qquad

Figure 2
A view of the packing of (I). Hydrogen bonds are drawn as dashed lines.
$\mathrm{C} 1-\mathrm{C} 6$ ring (A) and the plane of the $\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{O} 3$ aliphatic chain is $18.30(6)^{\circ}$. The dihedral angles between the $\mathrm{H} 1 / \mathrm{N} 2 / \mathrm{N} 1 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{O} 1$ ring formed through intramolecular hydrogen bonding, the $-\mathrm{NO}_{2}$ and $\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{O} 1 / \mathrm{O} 3 / \mathrm{Cl} 1$ planes and ring A are 16.48 (5), 6.60 (6) and $20.63(1)^{\circ}$, respectively.

In the crystal structure, molecules of (I) are linked through $\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{O} 5$ hydrogen bonds, forming chains along the a axis (Table 2 and Fig. 2). The hydrogen-bonded molecules are arranged in an $S(6) C(13)$ motif (Bernstein et al., 1995).

The packing is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions. There is a $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction between the ethyl group and the aromatic ring. For the $\mathrm{C} 12-\mathrm{H} 12 B \cdots \pi$ contact, the distance between atom $\mathrm{H} 12 B$ and the aromatic ring centroid is $2.82(3) \AA$ [symmetry code $(1-x, 1-x$, $1-z)$], with an angle of $158(2)^{\circ}$. There is also $\pi-\pi$ stacking between adjacent molecules, with $\mathrm{N} 1 \cdots \mathrm{C} 10^{\mathrm{i}}$ and $\mathrm{N} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$ distances of 3.216 (2) and 3.415 (2) \AA, respectively (Fig. 2) [symmetry code: (i) $1-x, 1-y, 1-z$].

Experimental

Compound (I) was prepared as the 4-chloro-2-[(4-nitrophenyl)-hydrazono]-3-oxobutyric acid ethyl ester (Odabaşoğlu et al., 2005), using 4-nitroaniline and ethyl 4 -chloroacetoacetate as starting materials (yield 91%; m.p. 419-421 K). The compound was recrystallized from glacial acetic acid.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{5}$
$M_{r}=313.70$
Triclinic, $P \overline{1}$
$a=9.0131$ (8) £
$b=9.4161$ (9) \AA
$c=9.8932$ (9) \AA
$\alpha=62.458(7)^{\circ}$
$\beta=66.520(7)^{\circ}$
$\gamma=86.438(7)^{\circ}$
$V=675.08(13) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.543 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 12102 \\
& \quad \text { reflections } \\
& \theta=3.2-26.0^{\circ} \\
& \mu=0.31 \mathrm{~mm}^{-1} \\
& T=296(2) \mathrm{K} \\
& \text { Irregular fragment, dark red } \\
& 0.42 \times 0.33 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS 2 diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\min }=0.884, T_{\max }=0.946$
12102 measured reflections 2654 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.083$
$S=1.04$
2654 reflections
238 parameters
All H -atom parameters refined

> 2336 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.063$
> $\theta_{\max }=25.6^{\circ}$
> $h=-11 \rightarrow 11$
> $k=-11 \rightarrow 11$
> $l=-12 \rightarrow 12$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0411 P)^{2}\right. \\
\quad+0.167 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-_{0.32 \mathrm{e} \AA^{-3}}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

C1-N2	$1.396(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.491(2)$
$\mathrm{C} 4-\mathrm{N} 3$	$1.460(2)$	$\mathrm{C} 9-\mathrm{N} 1$	$1.306(2)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.515(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.481(2)$
$\mathrm{C} 7-\mathrm{C} 11$	$1.773(1)$	$\mathrm{C} 10-\mathrm{O} 1$	$1.223(2)$
$\mathrm{C} 8-\mathrm{O} 3$	$1.203(2)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.315(2)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 9$	$123.11(13)$	$\mathrm{C} 9-\mathrm{N} 1-\mathrm{N} 2$	$122.43(13)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$123.84(12)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1$	$118.68(12)$
$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 9$	$121.80(13)$		
			$-179.88(12)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$	$168.59(14)$	$\mathrm{C} 9-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1$	$-6.66(19)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 1$	$-5.5(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 3-\mathrm{O} 5$	

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 \cdots \mathrm{O} 1$	$0.78(2)$	$2.02(2)$	$2.6193(17)$	$134(2)$
$\mathrm{C} 11-\mathrm{H} 11 B \cdots 5^{\mathrm{i}}$	$0.99(2)$	$2.51(2)$	$3.441(2)$	$157(2)$

Symmetry code: (i) $x+1, y-1, z$.
All H atoms were refined freely, with $\mathrm{C}-\mathrm{H}$ distances in the range 0.87 (2)-0.99 (2) \AA and an $\mathrm{N}-\mathrm{H}$ distance of 0.78 (2) \AA, and with $U_{\text {iso }}(\mathrm{H})$ values in the range $0.026(4)-0.062(7) \AA^{2}$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayis University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Odabaşoğlu, M., Özdamar, Ö. \& Büyükgüngör O. (2005). Acta Cryst. E61, o2065-o2067..

organic papers

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany

